

# **Switchgear Connecting Technologies**

This document has been written by Cable Accessories manufacturers to describe the technologies suitable to connect Switchgears to the electrical networks. It also provides an overview of possible applications, guidance in choosing the right products and applicable tests.

# I - Grid Description

In common usage, the voltage range is referred to as "Medium Voltage" although this is not a standardized term. Medium Voltage represents the range between 1 kV and 36 kV according to EN 50160, but the upper limit could change from country to country and harmonization documents like HD629.1 covers up to 20,8/36(42) kV. Medium voltage is primarily used in the distribution network between substation and transformer station applications. Underground cables are increasingly used instead of overhead lines as the means of distribution.



Depending on load density, different voltage levels are used (see table below).

| Standardized insulation levels $U_0/U$ ( $U_m$ ) |                     |  |  |
|--------------------------------------------------|---------------------|--|--|
| 3.6/6.0 (7.2) kV                                 | 12.7/22.0 (24.0) kV |  |  |
| 3.8/6.6 (7.2) kV                                 | 18.0/30.0 (36.0) kV |  |  |
| 6.0/10.0 (12.0) kV                               | 19.0/33.0 (36.0) kV |  |  |
| 6.35/11.0 (12.0) kV                              | 20.8/36.0 (42.0) kV |  |  |
| 8.7/15.0 (17.5) kV                               | 26.0/45.0 (52.0) kV |  |  |
| 12.0/20.0 (24.0) kV                              |                     |  |  |



The publication "Distribution Grids in Europe – Facts and Figures 2020" from Eurelectric association reports the main voltage classes operated in Europe and listed in the table below:

|                | Main U voltage classes used by DSOs |          |       |          |          |
|----------------|-------------------------------------|----------|-------|----------|----------|
| wilddie Europe | 6/6,6 kV                            | 10/11 kV | 15 kV | 20/22 kV | 30/33 kV |
| Austria        |                                     | Х        |       | X        | Х        |
| Baltics        | Х                                   | x        | Х     | x        |          |
| Belgium        | Х                                   | Х        | Х     |          | Х        |
| Czech Republic | Х                                   |          |       | x        | Х        |
| Finland        |                                     |          |       | x        | Х        |
| France         |                                     |          |       | X        |          |
| Germany        |                                     | x        | Х     | x        | Х        |
| Hungary        |                                     | x        |       | x        | Х        |
| Ireland        |                                     | Х        |       | x        |          |
| Italy          |                                     |          |       | x        |          |
| Luxemburg      | Х                                   |          |       | x        |          |
| Netherlands    | Х                                   | х        |       | x        | Х        |
| Norway         |                                     |          |       | x        |          |
| Poland         | Х                                   |          | Х     | X        | Х        |
| Portugal       | Х                                   | х        | Х     |          | Х        |
| Romania        | Х                                   |          |       | x        |          |
| Slovakia       |                                     | x        |       | x        |          |
| Spain          |                                     | Х        | Х     | X        | Х        |
| Sweden         |                                     | Х        |       | X        | Х        |
| Switzerland    |                                     | 20       |       | 80       |          |



# **II – Definitions**

## A. General

| Termination         | A device <b>fitted to the end of a cable</b> to ensure electrical connection with other parts of the system and to <b>maintain the insulation</b> up to the point of connection                                                                                                                                                                                     |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Separable Connector | A <b>fully insulated termination</b> permitting the <b>connection and disconnection</b> of the cable to and from <b>the mating bushing</b> .                                                                                                                                                                                                                        |
| Bushing             | A <b>bushing</b> allows an electrical connection to <b>penetrate the metallic casing of</b><br><b>switchgear, transformers, or other equipment</b> (e.g., electric motors). One end of the<br>bushing is immersed in an <b>insulating medium</b> (gas or oil) inside the casing and the<br>other end has a <b>standardized interface</b> for a separable connector. |



## **B.** Separable Connectors

There are two main separable connector families.

| <b>Dead Break</b><br>separable connector | A separable connector which can be connected / disconnected only when <b>the system is not energized</b> . |
|------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Load Break<br>separable connector        | A separable connector which can be connected/disconnected under voltage and load.                          |

The Dead Break system is the only one used in Europe. The Load Break system is mainly used in North America.



#### C. Dead Break Separable Connectors

Within the family of Dead Break separable connectors there are two basic designs.

**Screened Separable Connector:** A separable connector which has a fully screened external surface ("safe to touch" under normal service conditions).



**Unscreened Separable Connector:** A separable connector which does not have an external screen (not "safe to touch").



**Screened separable connectors are more popula**r: their screened design makes them safer and more suitable for applications with reduced clearance or compact compartments.



# **III – Bushing Interface description**

The bushings are usually pre-installed and delivered with the equipment (switchgear, transformer, etc...). Separable connectors are usually provided via a different supply-chain and need to be correctly specified to ensure compatibility with the bushing interface and cable to be connected.

Two EN standards describe the existing interfaces:

- EN 50180: Bushings above 1 kV up to 52 kV and from 250 A to 3.15 kA for liquid-filled transformers.
- EN 50181: Plug-in type bushings above 1 kV up to 52 kV and from 250 A to 2.50 kA for equipment other than liquid filled transformers (e.g., switchgear, motors, etc).

There are two basic types of bushing interface:

- Outside Cone
- Inside Cone

#### A. Outside Cone Bushings

Each interface has differing dimensions of the bushing cone and is rated for a range of currents. A voltage class is defined for each interface type. The following table describes the standardized interfaces:

| Interface type | U <sub>m</sub> (kV) | I <sub>r</sub> (A) | Contact type |
|----------------|---------------------|--------------------|--------------|
| А              | 12 – 24             | 250                | Sliding      |
| В              | 12 - 24 - 36        | 250 – 400          | Sliding      |
| С              | 12 - 24 - 36        | 630 – 1250         | Bolted       |
| D 12–24        |                     | 000 1250           | Bolted       |
| E              | 36                  | 800 - 1250         | Bolted       |
| F              | 12 - 24 - 36        | 630 - 1250 - 2500  | Bolted       |
|                | 12 - 24 - 36 - 52   | 630 – 1250         | Bolted       |

Sliding contact types (cf. Fig 6) are limited up to 400A rating.

For rating starting from 630A, the contact is bolted (cf. Fig 7).



| Figure 5: Bushing<br>Interface A - 250A / 24kV                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ol> <li>Bushing body</li> <li>Bushing interface with separable<br/>connector</li> <li>Earthing</li> <li>Bushing rod</li> <li>Bushing contact: sliding or bolted</li> <li>Protective cap</li> <li>Bail holder (for sliding contact<br/>interface)</li> </ol>                                                                                                                                                 |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 6: Elbow Separable Connector<br>Interface A - 250A / 24kV      | Diagram above shows main parts of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ol> <li>Cable conductor lug</li> <li>Pin finger for sliding contact</li> <li>Separable connector electrode</li> <li>Separable connector outer<br/>semiconductive screen</li> <li>Separable connector insulation</li> <li>Separable connector voltage test<br/>point</li> <li>Bail holders</li> <li>Earthing eye</li> <li>Groove for locking ring</li> <li>Earth cover</li> </ol>                            |
| Figure 7: Asymmetric Separable<br>Connector Interface C – 630A / 36kV | 2       2       0         9       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0       0         10       0 | <ol> <li>Cable conductor lug</li> <li>Clamping screw for bolted contact</li> <li>Separable connector electrode</li> <li>Separable connector outer<br/>semiconductive screen</li> <li>Separable connector insulation</li> <li>Separable connector voltage test<br/>point</li> <li>Insulated tap</li> <li>Semiconductive cap</li> <li>Earthing eye for ground<br/>connection</li> <li>Cable adapter</li> </ol> |



#### **B.** Inside Cone Bushings

7

Each interface has differing dimensions of the bushing cone and is rated for a range of currents. A voltage class is defined for each interface type. The following table describes the standardized interfaces:

| Interface type | U <sub>m</sub> (kV) | I, (A)    | Contact type |
|----------------|---------------------|-----------|--------------|
| 0              | 12 – 24             | 250       | Sliding      |
| 1              | 12 - 24 - 36        | 400 – 630 | Sliding      |
| 2              | 12 - 24 - 36        | 800       | Sliding      |
| 3              | 12 - 24 - 36 - 52   | 1250      | Sliding      |

The diagram below shows the main parts of an inside cone connection:





#### C. Guidelines for choosing the right separable connector

In order to choose the right separable connector and ensure its compatibility with:

The Bushing - The requested information is:

- The bushing interface: letters A, B, C, etc... for Outside Cone / numbers 0, 1, 2, etc ... for Inside Cone
- The bushing rating: 250A, 400A, 630A, etc...
- The bushing voltage class: 12kV, 24kV, 36kV, etc...

The Cable - The requested information is:

- The cable design: one core or three-core
- The cable conductor cross-section and nature
- **The cable layers** (insulation, outer sheath) **outer diameters**
- **The cable metallic screen design** (Cu wire, Cu Tape, Polylam, etc..)

#### IV - Comparison of separable connector with other cable/equipment connections:

Air-insulated switchgear is often used in walk-in transformer stations and represents approximately 30% of applications. Indoor terminations are used in this kind of switchgear.

The general construction of an air-insulated walk-in transformer space is simple, but the overall space requirement is high due to the necessary space to accommodate clearance distances.



Figure 10: Indoor terminations set-up



#### Modern medium-voltage switchgear is designed to be fully enclosed.

All active parts such as bus ducts and switching devices are inaccessible during normal operation. **This requires an extended maintenance-free** design of the bus duct connections and the switching devices. In gas-insulated switchgear SF6 gas is used (prior art). In state-of-the-art switchgear a solid insulation of various casting resins is used for insulation means. Alternative gases (based on fluor ketones) are also used. The use of a vacuum as an insulation medium is also possible. Depending on the rated voltage and short-circuit breaking capacity, switching devices are designed as vacuum switching devices or gas insulated devices.

**Separable connectors are used in these switching devices**, in which the bushings are in accordance with EN 50180, 50181 and DIN 47637.

Compared with Indoor Terminations, **Separable connectors** can be used independently of the insulation type (SF6, vacuum, air, oil) used in the equipment and:

- are maintenance free
- can be temporarily immersed in water
- can be easily connected and disconnected
- are suitable for outdoor and indoor applications
- their insulation withstand is not related to the air environment

#### Screened separable connectors are suitable for more compact equipment.

Separable connectors are removable, and usually consist of a prefabricated body with prefabricated and specially designed electrodes. The design in general **makes the handling very easy** compared to conventional solutions used for some indoor terminations. Installation does not require special tools. The most common materials are EPDM-rubber and silicone rubber, these materials in combination with the special design makes the bodies very compact.

Outside cone technology is widely used as it is simple and relatively inexpensive.









Figure 13: Straight separable connectors for Inside cone without metal housing



Figure 14: Straight separable connectors for Inside cone with metal housing



#### 250 A connector installed on a voltage transformer in a gas insulated switchgear



There are different types of T-shaped separable connectors with an outer semi-conductive layer. Due to the design the fault current test is necessary but exposed electrical parts are "safe to touch" under normal service conditions.

| Screened Separable connector with metal housing | Screened Separable connector               |
|-------------------------------------------------|--------------------------------------------|
| Inner semi-con                                  | Inner semi-con                             |
| Outer semi-con                                  | Outer semi-con                             |
| Additional metal encapsulated system            | Outer semi-con with functional dimension   |
| No residual potential on the outer surface      | No residual potential on the outer surface |
|                                                 |                                            |

Separable connectors with outer semi conductive layer are the most common design for safety reasons.

| Interface A<br>250A                   | Interface B<br>400A                   | Interface C<br>630/1250A | Interface C<br>Coupling 630/1250A        |
|---------------------------------------|---------------------------------------|--------------------------|------------------------------------------|
| Straight connector<br>Elbow connector | Elbow connector<br>Straight Connector | T-form connector         | T-form connector with coupling connector |
|                                       |                                       |                          |                                          |



Some separable connectors still exist with metal housing design. The presence of the metal housing removes the necessity to perform the fault current test according to standard HD 629.1.



## V – Examples of connections configurations:

Separable connectors are used to connect equipment such as switchgear, transformers, or motors.



Figure 16: Cable connection in the cable compartment of a gas insulated switchgear



Figure 17: Double cable connection: Screened separable connectors on Interface C bushing and coupling connector in switchgear with 2 bushings for each phase, cable fixing beneath the compartment







#### VI –Separable Connector Tests:

The cable cross-section and the conductor material choices for tests are driven by the current rating of the separable connector and are detailed in the following table:

| Rating of separable  | Cable conductor cross section (mm <sup>2</sup> ) |       |                                       |     |
|----------------------|--------------------------------------------------|-------|---------------------------------------|-----|
| connector            | Test sequence D1/E1 <sup>a)</sup>                |       | Test sequence D2/E2 <sup>c), d)</sup> |     |
| Conductor>           | Cu                                               | Al    | Cu                                    | Al  |
| 250 A                | 50                                               | 70    | 50                                    | 70  |
| 400 A                | 95                                               | 150   | 95                                    | 120 |
| 630 A                | 185                                              | 300   | 120                                   | 185 |
| 800 A                | 300                                              | 400   | 150                                   | 240 |
| 1250 A               | 500                                              | 630   | 240                                   | 400 |
| 2500 A <sup>b)</sup> | 2x500                                            | 2x630 | 500                                   | 800 |

Qualification test sequences are described in the Cenelec HD629.1S3 document:

- Sequence D1/E1 checks, after thermal ageing due to the current load, the electrical characteristics of the separable connector, its watertightness, and its ability to disconnect and reconnect.
- Sequence D2/E2 checks its ability to withstand short-circuit on the cable conductor and on the cable metallic screen.
- Additional specific tests for separable connectors are performed.

The purpose of some of these additional tests is to ensure the safety of the jointer when working with a separable connector:

- **Capacitive test point performances**: allow the check the presence/absence of voltage before disconnection.
- Screen resistance measurement and Leakage current measurement: ensure that no electric shock is received if a separable connector is touched by hand when it is in service.
- Screen fault current initiation: to demonstrate the ability of the separable connector screen to initiate a fault to earth which produces sufficient current to operate the circuit protection, should its insulation fail. Test conditions are according to the grid earth system (solidly earthed, resistance earthed, impedance earthed or unearthed systems).

Other tests are used to verify the mechanical operation of the separable connector:

- **Operating force**: Measure that disconnection and connection force at -20°C for sliding contact separable connectors is acceptable.
- **Operating eye test**: It is applied on sliding contact separable connectors equipped with operating eye. It is inherited from load break design separable connectors. An operating eye is not a mandatory component for dead break applications.

Disclaimer: The present information paper reflects the best knowledge of Europacable experts at the moment of its publication. It is intended as a tool among others to inform about the mechanical forces and movements in underground cables and cable accessories. It is not a legal or legally binding document and is not intended as a substitute for each manufacturer's or user's or installer's own assessment and decision making. Europacable declines any and all liability for any measure taken or not taken on the basis of this information paper. This paper is for general informational purposes only. © 2024 Europacable - All rights reserved